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Abstract

Analyzing the linguistic, psychological, and social dimensions of large textual corpora has tradi-
tionally involved a tradeoff between the richness of the constructs measured and the scalability
of measurement. While qualitative approaches like expert human coding can capture complex,
high-dimensional constructs, they are often too costly and time-consuming to apply to large
datasets. Automated computational methods, on the other hand, scale efficiently but typically
measure relatively simplistic constructs. I propose a set of novel techniques using large lan-
guage models (LLMs) to move past this tradeoff, with the goal of enabling rich, qualitative
measurement of complex constructs at scale, and show that by carefully designing prompts that
imbue LLMs with the knowledge and reasoning abilities of human experts we can elicit high-
quality annotations of latent constructs directly from textual data. I apply this approach to the
Discourse Quality Index (DQI), a widely used framework for assessing the deliberative quality
of political communication, and show that LLMs can automate the coding of the DQI in a
sample of parliamentary speeches at a performance level comparable to human annotators. By
comparing a human-annotated database of over 1000 speeches from the US Congress to those
generated by LLMs, I demonstrate that by carefully designing prompts with a combination of
instructions, contextual data, and a handful of high quality examples of the desired annotation
behavior, Generative LLMs can “learn” to perform complex, multidimensional annotations of
political speech at the level of expert coders, and at a fraction of the time and effort.
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1 Introduction

The ability to measure complex linguistic, psychological, and social constructs from textual data
is central to many research questions in the social sciences and humanities. In political science,
for example, understanding the quality of deliberative communication in parliamentary debates is
essential for evaluating the health of democratic institutions and the legitimacy of political decisions
(Habermas, 1996; Bächtiger et al., 2018b; Steenbergen et al., 2003). Similarly, tracking the evolu-
tion of social norms and cultural beliefs over time involves measuring latent dimensions like moral
sentiment (Garg et al., 2018), gender stereotypes (Garg et al., 2018), and individualism-collectivism
(Grossmann and Varnum, 2015) in large historical corpora.

Traditionally, measuring such rich, high-dimensional constructs from text has relied on quali-
tative methods like expert human annotation. Approaches like the Discourse Quality Index (DQI;
Steenbergen et al. 2003) leverage the knowledge and interpretive abilities of trained coders to make
judgments about multiple dimensions of textual data, from the logical coherence of arguments to
the respect afforded to alternative viewpoints. While these methods can yield valid and reliable
measurements of complex constructs, they are often prohibitively expensive and time-consuming to
apply to large datasets. As a result, many researchers have turned to more scalable computational
methods, such as dictionary-based sentiment analysis (Tausczik and Pennebaker, 2010), supervised
machine learning on labeled data (Rudkowsky et al., 2018), and unsupervised topic modeling (Blei
et al., 2003). However, these automated methods typically measure relatively narrow and simplistic
constructs, as they rely on predefined linguistic features or limited training data and cannot reason
about the deeper meaning and context of the text.

In this paper, I propose a novel approach that uses large language models (LLMs) and prompt
engineering to overcome the tradeoff between measurement richness and scalability in textual analy-
sis. LLMs, such as GPT-4 (OpenAI, 2023), Claude (Anthropic, 2023), DeepSeek (Zhu et al., 2024),
and Meta’s LLaMA (Dubey et al., 2024), are deep neural networks that have been pretrained on
vast amounts of textual data to perform open-ended natural language tasks. By virtue of their
pretraining, LLMs have absorbed a broad knowledge base spanning science, history, culture, and
current events (Petroni et al., 2019), and have developed strong capabilities for natural language un-
derstanding and generation (Brown et al., 2020). Crucially, LLMs can be “programmed” to perform
specific tasks through prompt engineering—the process of designing natural language instructions
that guide the model to produce the desired output (Liu et al., 2021).

My key argument is that prompt engineering can be used to imbue LLMs with the knowledge and
analytical abilities of human experts, enabling them to make rich, contextually informed judgments
about the linguistic, psychological, and social dimensions of text. By providing LLMs with detailed
definitions and examples of the target constructs, along with step-by-step instructions for applying
expert reasoning to the data, I show that we can generate high-quality annotations of complex
latent variables directly from the raw text. This approach leverages the pretrained knowledge and
generative capabilities of LLMs to scale up the process of expert content analysis, making it feasible
to measure constructs across large, heterogeneous corpora.

In this paper, I empirically assess the ability of LLMs to automate the coding of the DQI in
a sample of parliamentary speeches. To do this, I construct a validation dataset of 1000 human-
annotated speeches from the 101st and 104th US Congress by manually combining the raw speeches
from the Congressional Record (Gentzkow and Shapiro, 2017) with the corresponding DQI annota-
tions from expert coders (Steenbergen et al., 2003). Using this dataset, I evaluate the performance of
different LLMs in automating the coding of the DQI using a variety of prompting strategies, includ-
ing zero-shot, few-shot, and many-shot in-context learning, as well as Chain-of-Thought reasoning
where the model is guided to generate a logical argument chain for each annotation. I show that
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many-shot learning is particularly effective at reducing annotation error across most dimensions of
the DQI, but that there are diminishing marginal returns on examples after a certain point, typicaly
around 25-50 examples. I also find that while more expensive high-parameter models like GPT-4
perform better with few in-context examples, this advantage diminishes as the number of examples
increases, with less costly models like DeepSeek Coder outperforming GPT-4 when provided with
sufficient examples.

In sum, this paper contributes to both established literature in political science that seeks to
measure the quality of deliberative communication, and the broader field of computational social
science by providing a novel framework for measuring complex constructs from text, and demonstrat-
ing the potential of LLMs to advance research on political communication, deliberative democracy,
and social interaction. In addition, I provide a first step towards a general framework for using
LLMs and prompt engineering to scale the measurement of complex constructs across diverse re-
search domains, potentially transforming how we study and understand the dynamics of linguistic,
psychological, and social interaction in the digital age. All of the code for my implementation is
available as a Github repository1, along with a web application that allows users to interact with
the enriched network representation of the debates, and explore the relationships between speakers,
arguments, and topics.

2 Previous Work

This paper builds on and integrates three research topics: computational methods for measuring
latent constructs from text, large language models and their applications, and the Discourse Quality
Index and its role in deliberative democracy research.

2.1 Computational Methods for Textual Measurement

A growing body of research in the social sciences and humanities uses computational methods to
measure linguistic, psychological, and social constructs from large textual corpora. One common
approach is dictionary-based text analysis, which counts the occurrence of predefined words and
phrases associated with particular constructs (Grimmer and Stewart, 2013). For example, the
Linguistic Inquiry and Word Count (LIWC) software uses dictionaries to measure dimensions like
emotional tone, cognitive processes, and social relationships in text (Tausczik and Pennebaker,
2010). While dictionary methods are simple and transparent, they often lack precision and context-
sensitivity, as they do not consider the deeper meaning or syntactic relations between words (Ribeiro
et al., 2016).

More recently, researchers have applied supervised machine learning to textual measurement
tasks, using labeled data to train classifiers to predict latent categories (Grimmer and Stewart, 2013).
For instance, Rudkowsky et al. (2018) train a support vector machine on hand-coded examples to
detect speeches related to economic policy in Austrian parliamentary records. Similarly, Card et al.
(2015) use a logistic regression model to measure ideological bias in newspaper articles, based on
human annotations. While supervised learning can achieve high accuracy in specific domains, it
requires substantial upfront investment in data labeling and is difficult to generalize to new contexts
or constructs.

Unsupervised learning techniques, such as topic modeling (Blei et al., 2003) and clustering
using word embeddings (Mikolov et al., 2013), offer a more flexible approach to measuring latent
dimensions in text. These methods uncover hidden semantic structures in the data, which can

1https://github.com/mbosley/dqi-annotation-pipeline
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be used to track the evolution of themes (Chaney and Blei, 2012), ideologies (Sagi and Deignan,
2013), and cultural values (Garg et al., 2018) over time. However, unsupervised methods typically
require careful post-hoc interpretation to map the learned structures onto meaningful theoretical
constructs, and may not capture more complex, multi-dimensional concepts.

In contrast to these automated approaches, the method proposed here leverages the knowledge
and reasoning capabilities of large language models to emulate the context-sensitive judgments of
human experts in measuring latent constructs from text. By explicitly encoding the definitions,
examples, and analytical logic of the target constructs in the prompt, I can guide the model to
generate rich, theoretically grounded annotations at scale, without the need for extensive upfront
labeling or post-hoc interpretation.

2.2 Large Language Models and their Applications

The approach is enabled by recent breakthroughs in natural language processing, particularly the
development of large language models (LLMs) - deep neural networks that learn to model the
statistical patterns in huge text corpora (Bommasani et al., 2021). LLMs like GPT-3 (Brown et al.,
2020), PaLM (Chowdhery et al., 2022), and Claude (Anthropic, 2023) have achieved remarkable
performance across a wide range of language tasks, including question-answering, summarization,
and open-ended generation. By virtue of their broad pretraining, LLMs have acquired an extensive
knowledge base spanning science, history, culture, and current events (Petroni et al., 2019), as well
as strong capabilities for natural language understanding and reasoning (Rae et al., 2021).2

A key property of LLMs is their ability to perform new tasks without further training, simply
by conditioning on natural language prompts that describe the desired behavior (Liu et al., 2021).
This “in-context learning” capability has enabled researchers to adapt LLMs to a wide range of
applications through prompt engineering - the process of designing instructions that elicit the desired
model outputs (Reynolds and McDonell, 2021). For example, by providing a prompt with a few
example question-answer pairs, users can guide LLMs to answer open-ended queries about new
topics (Brown et al., 2020). Similarly, by specifying the desired format and style in the prompt,
users can control the model’s generation of summaries, translations, and creative writing (Radford
et al., 2019).

Prompt engineering is an emerging technique in natural language processing (NLP) and artifi-
cial intelligence (AI) that involves designing and optimizing textual prompts to elicit high-quality
outputs from language models (Liu et al., 2021). By carefully structuring the prompt to provide
context, instructions, examples, and formatting guidance, researchers can effectively "program" the
model to perform complex tasks, such as data annotation and content analysis. Prompt engineering
has been successfully applied in various domains, such as sentiment analysis (Shin et al., 2020),
named entity recognition (Cui et al., 2021), and open-ended question answering (Kojima et al.,
2022). Prompt engineering has been used to improve the performance of LLMs on benchmark NLP
tasks like sentiment analysis (Shin et al., 2020), named entity recognition (Li et al., 2022), and
textual entailment (Liu et al., 2022). Researchers have also developed techniques for optimizing
prompts to achieve specific behaviors, such as reducing harmful outputs (Ouyang et al., 2022),
improving truthfulness (Lin et al., 2021), and following instructions (Mishra et al., 2022). How-
ever, there has been little work on using prompt engineering to guide LLMs to perform open-ended
content analysis of the kind traditionally done by human experts.

This paper contributes to this research by showing how prompt engineering can be used to
generate context-sensitive judgments about the linguistic, psychological, and social dimensions of

2For a more in-depth overview of the use of LLMs for measuring concepts from text, refer to Appendix A.
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text from LLMs. By providing the model with definitions, examples, and step-by-step instructions
for applying expert analytical frameworks, I can effectively “program” it to perform rich, theoretically
grounded measurement of complex constructs at scale. This approach opens up new possibilities
for leveraging the knowledge and reasoning capabilities of LLMs to accelerate research in the social
sciences and humanities.

Dimension Definition Scoring Criteria

Participation The extent to which participants are
able to engage in the debate without
being constrained.

0: Participation impaired, 1: Normal
participation

Justification
(Level)

The extent to which arguments are sup-
ported by reasons.

0: No justification, 1: Vague assertion,
2: General justification, 3: Specific jus-
tification

Justification
(Content)

The quality of the justification pro-
vided.

0: Lack of facts, 1: Oversimplification,
2: Relevant examples, 3: Balanced con-
sideration

Respect
(Groups)

The extent to which participants show
respect towards other groups.

0: No respect, 1: Formal respect, 2:
Substantial respect

Respect
(Demands)

The extent to which participants show
respect towards the demands of other
groups.

0: No respect, 1: Formal respect, 2:
Substantial respect, 3: Acknowledges
legitimacy

Respect
(Counterar-
guments)

The extent to which participants show
respect towards counterarguments.

0: No respect, 1: Formal respect, 2:
Substantial respect, 3: Acknowledges
validity, 4: Engages with counterargu-
ment

Constructive
Politics

The extent to which participants en-
gage in positive sum politics and try to
reach compromise solutions.

0: Positional politics, 1: Alternative
proposal, 2: Consensus appeal, 3: Me-
diating proposal

Table 1: DQI dimensions and scoring criteria

2.3 The Discourse Quality Index

The Discourse Quality Index (DQI) is a widely used framework for assessing the deliberative qual-
ity of political communication, which has played a central role in empirical research on deliberative
democracy (Steenbergen et al., 2003; Bächtiger et al., 2018b). Deliberative democracy is a normative
theory that emphasizes the importance of reasoned, inclusive, and respectful dialogue in political
decision-making (Habermas, 1996; Gutmann and Thompson, 2004). It argues that legitimate and
effective governance requires that citizens and their representatives engage in open-minded and mu-
tually accountable communication, with the aim of finding common ground and reaching justifiable
decisions.

The DQI aims to operationalize these normative criteria into a set of measurable dimensions
that can be used to evaluate the deliberative quality of real-world political discourse (Steenbergen
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et al., 2003). It consists of a detailed coding manual that guides trained annotators to score speech
acts on seven key dimensions: participation, level of justification, content of justification, respect
for groups, respect for demands, respect for counterarguments, and constructive politics. Each
dimension is scored on an ordinal scale based on the degree to which the speech act fulfills the
relevant deliberative criteria, with higher scores indicating more deliberative quality.

The DQI has been applied to a wide range of political contexts, including parliamentary debates
(Bächtiger and Steiner, 2005), public consultation processes (Caluwaerts and Deschouwer, 2014),
and online discussions (Friess and Eilders, 2015). These studies have yielded important insights
into the factors that shape deliberative quality, such as institutional design (Steiner et al., 2004),
issue characteristics (Hangartner et al., 2007), and group diversity (Caluwaerts and Reuchamps,
2014). They have also explored the consequences of deliberative quality for outcomes like decision
legitimacy (Steenbergen et al., 2003), opinion change (Luskin et al., 2002), and policy innovation
(Bächtiger et al., 2010).

However, the application of the DQI to large-scale textual data has been limited by the time
and effort required for manual annotation. Coding a single debate using the DQI can take several
weeks and requires multiple trained annotators to ensure reliability (Steiner et al., 2004). This has
constrained the scope and generalizability of previous DQI studies, which have typically focused on
a small number of purposively selected cases. To date, there has been little work on automating
the DQI coding process to enable large-scale deliberation research.

This paper addresses this gap by demonstrating how large language models can be used to
generate high-quality DQI annotations at scale, through the use of prompt engineering. By providing
the model with the coding criteria, examples, and analytical steps in the DQI manual, I can guide
it to perform the same kind of context-sensitive evaluation of deliberative quality as human experts.
This opens up new opportunities for systematic comparative research on the dynamics and impacts
of deliberative communication across a wide range of contexts and over time. It also contributes
to the broader enterprise of measuring the health and quality of democratic discourse in an era of
polarization, misinformation, and digital transformation.

3 Methodology

In this section, I detail the methodology I use to generate my results, with which I am to evaluate
the performance of large language models in automating the coding of the Discourse Quality Index
(DQI) in a sample of parliamentary speeches. I show that by carefully designing prompts that
provide LLMs with the knowledge and reasoning abilities of human experts, we can elicit high-
quality annotations of complex constructs directly from textual data, at a fraction of the cost and
time required for manual coding, and that many-shot in-context learning is particularly effective at
reducing annotation error across most dimensions of the DQI.

3.1 Data

To establish a baseline measurement of the quality of the DQI annotations generated by LLMs, I
construct a validation dataset of 1000 parliamentary speeches from the 101st and 104th US Congress
from Steenbergen et al. (2003). To do so, I manually combined speech-level DQI annotations by ex-
pert coders3 with the raw speeches from the Congressional Record (Gentzkow and Shapiro, 2017).

3The DQI annotations were obtained using the Wayback Machine, a tool that automatically archives web pages
for later retrieval, to access the original website which housed the DQI annotations, which is no longer available. The
webpage can be found here.
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The data spans several dozen distinct debates on a wide range of topics, including healthcare,
abortion, and guns rights. Each debate is comprised of multiple speeches by different members
of Congress, with each speech annotated on seven dimensions of the DQI: participation, level of
justification, content of justification, respect for groups, respect for demands, respect for counterar-
guments, and constructive politics. As described in Table 1, each dimension is scored on an ordinal
scale with higher scores indicating higher deliberative quality.4

3.2 Prompt Structure

I develop a prompt template to guide the LLM annotation of parliamentary speeches using the
DQI framework, the guiding philosophy of which is to provide the language model with all of the
information that an expert human annotator would be provided with to conduct the same annotation
task. Effectively, I aim to provide the model with a codebook, a set of instructions and guidelines
for how to apply the DQI to a given speech, and the context that the speech occurs in.

An expert annotator tasked with applying the DQI to a series of legislative speeches would be
provided with, for example, an overview of the measurement technique and a theoretical justification
for its elements; strict guidelines for applying the measure to a given speech; instructions for how to
structure their annotations; and the context that the speech that they are annotating occurs (either
explicitly, or incidentally as a result of sequential labeling).

With the goal of replicating this same degree of detail for the AI model conducting the anno-
tation, my prompt template consists of the following eight components represented in Figure 1,
where each of the curly-braced components is replaced with the relevant information for the specific
annotation task.5

High-Level Overview The prompt explains the expert role of the annotator (a political scien-
tist), and briefly describing the task (analyzing a parliamentary speech using the DQI framework).

Theoretical Foundation As specified in dqi-theory, the prompt provides an overview of the
DQI framework and its theoretical foundations in the context of deliberative democracy. See 2 for
an excerpt of the theoretical foundation provided to the model. This formulation was taken directly
from the appendix in Steenbergen et al. (2003) that provides the theoretical foundation of the DQI.

Dimension Definitions and Scoring Criteria The prompt details the dimensions and scoring
criteria of the DQI, as outlined in dqi-criteria, providing descriptions and examples of the
scoring levels for each dimension and guiding the model to consider evidence for each possible score
before making a final decision. See 3 for an excerpt of the dimension definitions and scoring criteria
provided to the model. As with the theoretical foundation, this information was taken directly
from the appendix in Steenbergen et al. (2003) that provides the dimension definitions and scoring
criteria of the DQI.

Output Format As described in output-format, the prompt establishes a structured output
format for the annotations, including fields for each dimension and sub-dimension, as well as addi-
tional fields for overall notes and summary if specified. See Figure 4 for the JSON6 output format

4For an in-depth overview of the DQI and its annotation criteria, refer to Appendix B.
5A complete example of a prompt provided a language model can be found in accompanying dqi-prompt.txt,

and is omitted from the paper due to its length.
6JSON (JavaScript Object Notation) is a lightweight data-interchange format that is easy for humans to read and

write and easy for machines to parse and generate.
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You are an expert political scientist. Analyze the given
parliamentary speech and annotate it on the following dimensions
of the Discourse Quality Index (DQI), providing your reasoning,
scores, and confidence levels in the specified format.

Here is a theoretical overview of the DQI:
{dqi-theory}

Here is the set of annotation criteria for each dimension:
{dqi-criteria}

Structure your annotations in the following format:
{output-format}

Here are examples of speeches with corresponding annotations:
{example_annotation-1}
{example_annotation-2}
...
{example_annotation-n}

Here are the preceding speeches in the debate:
{preceding-speeches}

Annotate the following speech:
{target-speech}

When deciding on scores, engage in the following reasoning process:
{reasoning-process}.

Figure 1: High level overview of the DQI annotation prompt.
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provided to the model.

Sample Speeches and Annotations The prompt includes a set of sample speeches with corre-
sponding annotations, in example-annotation-1 to example-annotation-n, with the goal
of both establishing the expected level of detail and reasoning in the evidence/score justifications
and providing a model for the annotator to follow when coding the target speech. To generate these
examples, I select a random subset of speeches from the validation dataset and for each speech
provide the complete speech text along with the corresponding DQI annotations. As I discuss in
the next section, I experiment with different numbers of randomly selected examples to determine
how responsive the model is to demonstration of the desired annotation behavior.

Preceding Speeches The prompt provides the preceding speeches in the parliamentary debate,
in preceding-speeches, to give the model necessary context for understanding and evaluating
the speech to be annotated, including references to earlier speakers and arguments, and assessing
the speech’s responsiveness to other participants. When possible, I provide four speeches that
sequentially precede the target speech in the debate, to give the model a sense of the ongoing
conversation and the issues at stake. So that the previous speeches do not overwhelm the annotation
task, I provide an excerpt of the first 500 characters of each previous speech, up to a maximum of
2000 characters for the four speeches.

Target Speech The prompt presents the target speech to be annotated, in target-speech.
The target speech is the main focus of the annotation task, and the model is directed to provide
detailed annotations for each dimension of the DQI based on the content of the speech. I provide the
first 3000 characters of the speech to ensure that the model has sufficient context to make informed
judgments.

Reasoning Process Finally, the prompt reiterates key instructions for the annotation task, and
directs the model to respond with a particular reasoning process when deciding on scores, in
reasoning-process. Figure 5 shows the baseline closing instructions provided to the model
without any explicit attempt to guide the reasoning process.

It is worth noting that this prompt template was developed iteratively over several rounds of
piloting and refinement in which I tested the effectiveness of different prompt components and
formats in guiding the model to generate high-quality DQI annotations.

3.3 Model Selection and Parameter Configuration

Choosing the models There are four main considerations in selecting the models for the study:
the size/power of the model, its cost, the length of the input context, and whether it is closed or open
source. In general, larger models are expected to perform better on complex tasks like the DQI, but
they are also more expensive to run and may require more data to fine-tune effectively. The length
of the input context is important for capturing the full speech and debate context, while the cost
of the model is a key factor in determining the feasibility of large-scale annotation tasks. Finally,
the availability of the model’s source code can be important for transparency, reproducibility, and
customization—and so if all-else is equal, open-source models are preferred.

I evaluate the performance of several large language models in automating the coding of the DQI,
including GPT-4o from OpenAI, Claude 3 Haiku from Anthropic, DeepSeek Coder 2 from DeepSeek,
Llama 3 70B from Meta, Llama 3 8B from Meta, Qwen2 72B from Alibaba, and WizardLM 2 from
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The DQI attempts to measure political deliberation in a general,
valid and reliable way (Steenbergen et al. 2003). It mainly draws
on Habermasian discourse ethics, but also incorporates elements

of other deliberative models. The unit of analysis of the DQI is
a speech act, i.e. the discourse by a particular individual
delivered at a particular point in a debate. For each speech, we
distinguish between relevant and irrelevant parts, and only the
relevant parts are coded. A relevant part is one that contains a
demand, i.e. a proposal on what decision should or should not be
made. Our emphasis on demands stems from the fact that they
constitute the heart of the deliberation. That is, demands
stipulate what ought to be and what ought not to be, and this
normative character puts them at the center of discourse ethics.
The DQI is composed of seven indicators. Despite the considerable
complexity of parliamentary debates, we attempt to keep the

coding categories relatively easy, so as to ensure a high level
of reliability. The following is an elaboration of these
indicators, followed by an overview of the indicators and their
codes. We discuss seven the seven indicators under four headings.

1. Participation. Participation constitutes a fundamental
precondition for deliberation. In parliamentary settings of
western democracies, this type of basic participation can usually
be seen as given for the elected representatives. Normal

participation is only assumed to be impaired if a speaker is cut
off by a formal decision, or if she or he feels explicitly
disturbed in the case of a verbal interruption by other actors.

...

Figure 2: Excerpt of DQI Theoretical Foundation Provided To The Model
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1. Participation
0: participation was impaired - speaker was cut off or explicitly

disturbed
1: normal participation was possible

2. Justification
2.1 Level of Justification
0: no justification
1: inferior justification - reason given but not properly linked to

demand
2: qualified justification - one complete linkage between demand and

reason
3: sophisticated justification (broad) - multiple complete

justifications
4: sophisticated justification (in depth) - multiple justifications

with one embedded in complete inference chain

2.2 Content of Justification
0: explicit reference to group/constituency interests
1: neutral statement, no explicit references to group interests
2: explicit reference to common good (utilitarian/collective)
3: explicit reference to helping least advantaged (difference

principle)

...

Figure 3: Excerpt of DQI Dimension Definitions and Scoring Criteria Provided To The Model
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‘‘‘json
{

"participation": {
"reasoning": "Brief explanation for the score",
"score": [0/1]

},
"justification": {

"level": {
"reasoning": "Brief explanation for the score",
"score": [0/1/2/3/4]

},
"content": {

"reasoning": "Brief explanation for the score",
"score": [0/1/2/3]

}
},
"respect": {

"groups": {
"reasoning": "Brief explanation for the score",
"score": [0/1/2]

},
"demand": {

"description": "Brief description of main demand",
"reasoning": "Brief explanation for the score",
"score": [0/1/2/3]

},
"counterargument": {

"description": "Brief description of main counterargument",
"reasoning": "Brief explanation for the score",
"score": [0/1/2/3/4]

}
},
"constructive_politics": {

"reasoning": "Brief explanation for the score",
"score": [0/1/2/3]

}
}
‘‘‘

Figure 4: Output Format for DQI Annotations Provided To The Model
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Please provide your annotation in JSON format according to the
schema provided in the [JSON SCHEMA] section above.

Format your JSON output with markdown-style backticks, like this:
"‘‘‘json
{Your JSON here}‘‘‘
Be sure to include ALL of the relevant information from the schema

provided. Make sure that in your reasoning responses you consider
step by step each of the possible annotation categories given

the evidence at hand. Respond with only the JSON output.

Figure 5: Closing Instructions for Speech Annotation Prompt

Microsoft. These models, each of which are at or near the state-of-the-art, vary in size, cost, and
training data, and training techniques, with parameters ranging from 8 billion to 236 billion, and
token costs ranging from $0.05 to $5.00 per million tokens for input, and $0.25 to $15.00 per million
tokens for output.7

These differences in price can be substantial: for example, a typical query with 20,000 input
tokens (or roughly 7000 words) and 1000 output tokens (or roughly 300 words) would cost roughly
$0.0125 with a model like DeepSeek Coder 2, but $1.15 with a model like GPT-4o, a difference of
two orders of magnitude.

While each of these models has been trained on a large corpus of text data, they vary in the
specific training data and techniques used, with some models being trained on a diverse range of text
sources, and others being trained on more specialized or curated datasets. However, in the current
landscape of large language models, labs and companies tend to keep the specifics of their training
data and techniques proprietary, so it is difficult to make direct comparisons between models on
this basis.

In presenting the results, I focus on the performance of the GPT-4o, Claude 3 Haiku, and
DeepSeek Coder 2, as these models represent a range of sizes, costs, and training data, and are
among the most widely used and well-known models in the field.

Parameter configuration In configuring the models for the DQI annotation task, I set the
maximum token length of the input context to 128k tokens where possible, and the maximum token
length of the output annotations to 4000 tokens. I also set the temperature parameter to 0.7 for all
models, which controls the randomness of the model’s output, with lower temperatures leading to
more deterministic responses. While there is as yet no consensus on the optimal temperature for
fine-tuning LLMs, a temperature of 0.7 is a common choice in the literature, and has been found to
produce high-quality outputs in a range of tasks. For all other hyperparameters, (e.g. top-k, top-p,
nucleus sampling, etc.), I use the default settings provided by the model’s API.

7Tokens are the basic units of text that the model processes, and the cost per token is a measure of how expensive
it is to run the model. Each word is typically represented by three tokens, so the cost per token is a rough measure of
the cost per word (divided by roughly 3). Input tokens refer to the tokens in the prompt that are used to condition
the model, while output tokens refer to the tokens in the generated annotations that are used to evaluate the model’s
performance. Typically, API providers charge different rates for input and output tokens, with output tokens being
more expensive than input tokens, due to the additional processing required to generate the model’s response.
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Prompt Variants As much as possible, I keep the prompt template consistent across models, to
ensure a fair comparison of their performance on the DQI task. As I describe above, I principally
vary the number of example speeches provided to the model, to see how responsive the model is to
demonstration of the desired annotation behavior.

Because this is essentially the logic of supervised learning, I follow standard practices from that
tradition, and split the set of validated speeches into a training set and a validation set, with 80% of
the speeches used for training and 20% used for validation. I then randomly select 5, 10, 25, 50, and
100 example speeches from the training dataset, and provide these examples to the model in the
prompt template, in addition to the theoretical overview, scoring criteria, and context information.
For the Deepseek and Claude models, I conducted 5 random draws of the example speeches at each
level, to ensure that the results are robust to the specific examples provided. I also construct a
“zero-shot” variant of the prompt, where no examples are provided to the model, to see how well
the model can perform the DQI annotation task with only the theoretical and scoring information
provided in the prompt. I also experiment with a variant of DeepSeek Coder 2 that uses Chain-
of-Thought reasoning, where the model is guided to generate a logical argument chain for each
annotation, to see if this improves performance on the DQI task.

Evaluation Metrics To evaluate the performance of the models on the DQI annotation task, I
use the Mean Absolute Error (MAE) of the model’s annotations compared to the expert annotations
in the validation dataset (which, as mentioned above, is a random set of 20% of the human annotated
speeches that is not used to draw examples from for the training process). The MAE is calculated as
the average absolute difference between the model’s scores and the expert scores for each dimension
of the DQI, across all speeches in the validation dataset.8

While I also consider other metrics like accuracy and F1 score, the MAE is a natural measure
of model performance because it naturally captures the ordinal nature of the DQI dimensions (i.e.
a difference of 1 between scores 0 and 1 is more significant than a difference of 1 between scores 3
and 4), but without blowing up the error for large difference in scores the way that squared error
would, and provides a single summary statistic for comparing the performance of different models.

To get a sense of how a given MAE score compares to how well a human annotator would
perform on the DQI task, I take the reported inter-rater reliability of the DQI annotations in the
literature as a benchmark. There, the inter-rater reliability of the DQI is typically reported as a
Krippendorff’s alpha of around 0.7 to 0.8 (Neblo et al., 2018), which is considered a good level of
agreement for ordinal scales like the DQI.

We can translate this into a rough benchmark for the MAE by noting that the MAE is equivalent
to the average absolute difference between two annotators’ scores. For a single dimension of the
DQI that is bounded between 0 and 4, we can say that the maximum possible difference between
two annotators’ scores is 4, and that the minimum possible difference is 0. Given this, we can say
that an error of 2 for that dimension would be roughly equivalent to an inter-rater reliability of 0.5,
which is a poor level of agreement for the DQI, and that an error of 1 would be roughly equivalent
to an inter-rater reliability of 0.75, which the literature suggests is a good level of agreement for the
DQI.

8Formally, the MAE is defined as:

MAE =
1

N

N∑
i=1

1

M

M∑
j=1

|yij − ŷij | (1)

where N is the number of speeches in the validation dataset, M is the number of dimensions of the DQI, yij is the
expert score for the j-th dimension of speech i, and ŷij is the model’s predicted score for the j-th dimension of speech
i.
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Therefore, if after aggregating the MAE scores across all dimensions of the DQI, we find that
the MAE is roughly 1, we can say that the model is performing at a level that is roughly equivalent
to a good human annotator on the DQI task. If the MAE is less than 1, we can say that the model
is performing better than a good human annotator, and if the MAE is greater than 1, we can say
that the model is performing worse than a good human annotator.

3.4 Results

3.4.1 Model Performance

Figure 6 shows the performance of the models on the DQI annotation task as a function of the
number of in-context learning (ICL) examples provided to the model (both in the aggregate 6a and
by individual dimension 6b).

In both of these figures, the x-axis represents the number of in-context learning examples pro-
vided to the model, and the y-axis represents the mean absolute error of the model’s annotations
compared to the expert annotations in the validation dataset. The colored lines represent the
performance of different models on the DQI task (deepseek-coder, claude-3-haiku, and GPT-4o),
with each line corresponding to a different model, and each point on the line corresponds to the
performance for a given model with a given number of ICL examples.

On the left-most side of the figure we see the performance of the models with zero-shot learning,
i.e. when no examples are provided to the model. In Figure 6a we see that there is substantial
variation in the performance of the models with zero-shot learning: GPT-4o, the most expensive
model in the study, performs best with an aggregate MAE roughly 0.67, whereas deepseek-coder
and claude-3-haiku perform the worst with an aggregate MAE of just under 1.0.

As we move from left to right in the figure, we see that the performance of the models generally
improves as the number of ICL examples increases, and that there is variation in the model’s rate of
improvement with additional examples. GPT-4o, which performed the best with zero-shot learning,
surprisingly shows the least improvement with five examples (the point directly to the right of the
zero-shot point) in comparison to the other models, which make large gains in performance moving
from zero-shot to five examples. We see that as we increase the number of examples to 25, deepseek-
coder finds its plateau in performance roughly 0.43, which is the best performance of any model at
that level of examples. Comparatively, both GPT-4o and claude-3-haiku learn less efficiently from
the examples, requiring 50 examples to reach a similar level of performance.

In Figure 6b, we see that the performance of the models varies across the different dimensions
of the DQI, with some dimensions being easier for the models to learn than others, and some
models performing better on certain dimensions than others. All models perform the best on the
participation dimension, with MAE scores close to 0 for all models at all levels of examples. For
the level and content of justification dimensions, we see that while there is a similar pattern to the
overall performance with GPT-4o performing the best with zero-shot learning and the error reducing
across models as we increase the number of examples to five, we see that not all models improve
with additional examples. In particular, we see that the error actually increases as the number of
examples increase for deepseek-coder on the level of justification dimension and for GPT-4o on the
content of justification dimension, suggesting that the models may struggle with these dimensions
in particular.

Most models perform better on the respect (Groups, Demands, Counterarguments) and con-
structive politics dimensions as the number of examples increases. As in the overall performance,
we see that deepseek-coder performs the best on these dimensions, particularly compared to GPT-4o
on the respect for groups and respect for demands dimensions. For the respect for counterarguments
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(a) Model Performance (Mean Absolute Error) vs Number of ICL Examples

(b) Model Performance (Mean Absolute Error) vs Number of ICL Examples by DQI Dimension

Figure 6: Comparison of Model Performance for Different Numbers of In-Context Learning (ICL)
Examples
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Figure 7: Model Performance (Accuracy) vs Model Cost
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dimension, we see that there is a high error rate for the claude-3-haiku and deepseek-coder model at
zero examples, but that error decreases to around 0.9 for the deepseek coder model with around 20
examples. We see a similar pattern for the constructive politics dimension, with the error decreasing
to less than 0.5 for all models at 25 examples, with deepseek-coder again performing the best.

3.4.2 Model Cost

Figure 7 shows the relationship between performance and average cost per API query, compared
to an estimated cost of either an expert or a crowdworker annotating the same speech. As before,
the y-axis represents aggregate error, but here the x-axis represents the average cost per query in
USD, where a query generates a single set of DQI annotations for a single speech. It is important to
emphasize that the x-axis is on a logarithmic scale, so the cost of annotation increases exponentially
as we move from left to right.

On the far right-hand side of this graph is a green dashed vertical line corresponding to the
expected cost of an expert annotator, which I estimate to be $10 USD per speech. To the left is a
yellow dashed vertical line, corresponding to the expected cost of a crowdworker annotator, which I
estimate to be roughly $1 USD per speech. This difference amounts to a single order of magnitude,
which is represented on the logarithmic scale as a one-unit difference on the x-axis.

With this benchmark in mind, we can intuitively compare the cost to performance ratio of
each of the GPT-4o, DeepSeek Coder 2, and Claude 3 Haiku models to the cost of an expert or
crowdworker annotator. At 25 examples (i.e, where the red line intersects with 10−1 on the x-axis),
we can see that GPT-4o is roughly 10 times as costly as a crowdsourced annotator, and 100 times
as costly as an expert annotator. Claude 3 Haiku at 50 examples is in turn 10 times cheaper than
that, and DeepSeek Coder 2 at 5 examples is 10 times still.

All in all, these results show that deepseek-coder is both the most cost-effective and the best-
performing model on the DQI task. Table 2, which provides a summary of the optimal performance
of each model on the DQI task, along with the associated cost per million tokens for input and
output, reinforces this conclusion, showing that DeepSeek Coder 2 has the best performance on the
DQI task at the lowest cost, with an aggregate MAE of 0.48 at a cost of $0.14 per million tokens
for input and $0.28 per million tokens for output.
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Model Provider Parameters Context Cost ($/M tokens) Optimal In-Context Learning Performance

Length Input Output Examples Accuracy F1 Score MAE

GPT-4o OpenAI N/A 128k 5.00 15.00 50 0.6382 0.6454 0.4595
Claude 3 Haiku Anthropic N/A 200k 0.25 1.25 25 0.6366 0.6343 0.5322
DeepSeek Coder 2 DeepSeek 236b 128k 0.14 0.28 100 0.6826 0.6525 0.4799
DeepSeek Coder 2 (CoT) DeepSeek 236b 128k 0.14 0.28 25 0.6635 0.6304 0.4294
Llama 3 70B Meta 70B 8k 0.65 2.75 5 0.6120 0.6023 0.5452
Llama 3 8B Meta 8B 8k 0.05 0.25 5 0.5422 0.5530 0.7124
Qwen2 72B Alibaba 72B 32k 0.90 0.90 25 0.6466 0.6110 0.4560
WizardLM 2 Microsoft 176B 32k 1.20 1.20 25 0.6466 0.6110 0.4560

Table 2: Model Comparison with Optimal In-Context Learning Performance for DQI Task
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Figure 7 shows the relationship between average model accuracy and average cost per API query.9

Table 2 provides a summary of the optimal performance of each model on the DQI task, along with
the associated cost per million tokens for input and output, complementing the information provided
in Figure 7.

3.5 Discussion

There are several key takeaways from these results. The first is that even in these preliminary results,
we see evidence that generative language models can be used to automate the coding of complex
constructs like the DQI, with the best-performing models achieving MAE scores of around 0.45 to
0.55 on the DQI dimensions. Across all models, MAE scores averaged across each dimension range
between 0.68 and 1.1 even when no examples are provided to the model, suggesting that the models
are able to generate high-quality annotations based on the theoretical and scoring information
provided in the prompt.

Second, we see that many-shot in-context learning is very effective at reducing annotation error
across most dimensions of the DQI, and in aggregate, with the “sweet spot” for the number of exam-
ples typically being around 25, after which the benefits of additional examples diminish. However,
it is important to note that model performance does not uniformly improve across all dimensions
of the DQI—in the Justification-level dimension, which asks how well their demands are justified
by reasoning, MAE scores increased as the number of examples increased in all models except for
GPT-4o, suggesting that the models may struggle with this dimension in particular.

Third, using the benchmark for human performance on the DQI task discussed above, we can say
that an average MAE of 1.0 is roughly equivalent to the performance of a good human annotator
on the DQI task. With this as a reference point, we see that in aggregate, the models are able
to generate human-level annotations on the DQI task with just a few examples, and that the
performance improves to what we might expect from an expert annotator in the range of 25 to 50
examples.

Fourth, we see that while costlier models like GPT-4o tend to perform better with few in-
context examples than smaller models, the performance of these models converges as the number
of examples included increases. Moreover, the results show that Deepseek Coder 2, despite being
two orders of magnitude cheaper than GPT-4o, outperforms it in all comparisons except for the
zero-shot, suggesting that cost-effective models can be competitive with more expensive models on
the DQI task, and for complex annotation tasks more generally.

These are promising results. Given the complexity and subjectivity of the DQI coding task, the
fact that large language models can generate annotations that are close to expert annotations is a
significant achievement, and suggests that LLMs can be a valuable tool for automating the analysis
of deliberative quality in political discourse.

That said, there is much work to be done to determine the reliability and validity of LLM-
generated annotations, and to understand the conditions under which LLMs can be used to automate
complex coding tasks in political science and related fields. There are many opportunities for future
research in this area, including exploring the performance of LLMs on other qualitative coding tasks
in political science and related fields, investigating the impact of different prompt structures and
training techniques on model performance, and developing methods for evaluating the reliability
and validity of LLM-generated annotations.

9The total cost over all model runs and experimentation totaled roughly $500 USD, with the plurality of the cost
coming from the GPT-4o model—one full pass of the GPT-4o model across the 200 evaluation examples with 100
examples each cost roughly $70 USD.
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4 Conclusion

In this paper, I have presented a novel approach to automating the analysis of political discourse in
parliamentary debates using large language models (LLMs). I have developed a prompt template
for fine-tuning LLMs on the Discourse Quality Index (DQI), a widely used measure of political
deliberation, and have conducted a series of experiments to evaluate the performance of several
state-of-the-art LLMs on the DQI annotation task.

I then systematically compared the performance of these models on the DQI task to a human-
validated benchmark of the DQI annotations, and analyzed the relationship between model per-
formance and cost, to determine the feasibility and effectiveness of using LLMs to automate the
analysis of political discourse in parliamentary debates.

I showed that LLM models such as OpenAI’s GPT-4o, Anthropic’s Claude 3 Haiku, and DeepSeek’s
DeepSeek Coder 2 can be used to automate the coding of the DQI in parliamentary speeches, gen-
erating annotations that meet or exceed our expectations of human annotations at a fraction of the
cost. I also showed that the performance of these models can be improved by providing in-context
learning examples, and that the cost of using these models can be significantly reduced by selecting
the most cost-effective model for the task: in this case, DeepsSeek Coder 2 performed better than
the far more expensive GPT-4o model with just a handful of illustrative examples.

The results shown in this paper demonstrate the potential of large language models to automate
the analysis of political discourse in parliamentary debates. The first study shows that LLMs can
be used to automate the coding of the Discourse Quality Index (DQI) in parliamentary speeches,
generating annotations that are close to expert annotations and providing a new tool for analyzing
the quality of political discourse. The second study shows that LLMs can be used to generate
directed graph representations of legislative debates, capturing the structure and dynamics of po-
litical discourse in a way that is interpretable, scalable, and reliable, and providing a new method
for analyzing and understanding political discourse.

More broadly this study demonstrates the power of large language models to automate the
analysis of political discourse, providing new tools and methods for studying the structure and
quality of political discourse in parliamentary debates. By combining the DQI annotations with
the graph representations, we can generate new metrics for analyzing the structure and quality
of political discourse, and gain new insights into the dynamics of political discourse in legislative
debates. This research has the potential to transform the way we analyze and understand political
discourse, and to open up new avenues for research in the field of political science.

Future work in this area could explore the performance of LLMs on other qualitative coding
tasks in political science and related fields, investigate the impact of different prompt structures
and training techniques on model performance, and develop methods for evaluating the reliability
and validity of LLM-generated annotations. There are many opportunities for future research in
this area, and the potential for LLMs to transform the way we analyze and understand political
discourse is vast.
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A Appendix: Large Language Models for Text Classification

A.1 Introduction

Large language models (LLMs) have revolutionized the field of natural language processing (NLP),
enabling significant advancements in various tasks, including text classification. This appendix pro-
vides a technical introduction to LLMs, focusing on the Transformer architecture and its applications
in fine-tuning and in-context learning.

A.2 The Transformer Architecture

The development of LLMs has been driven by innovations in machine learning, such as word em-
beddings, neural networks, and the Transformer architecture. Word embeddings are dense vector
representations that capture the semantic meaning of words in a continuous space Mikolov et al.
(2013). Neural networks have provided the foundation for complex models capable of learning from
and generating text data Elman (1990); Hochreiter and Schmidhuber (1997); Kim (2014).

The Transformer architecture Vaswani et al. (2017) combines the strengths of previous neural
network models to create a powerful, scalable, and effective neural network for various NLP tasks.
It consists of an encoder, which processes the input text, and a decoder, which generates the output
text. The key components of the Transformer are:

• Self-attention mechanisms: These allow the model to attend to different parts of the input
sequence, capturing the relationships between words regardless of their position.

• Feed-forward layers: These layers process the information in a single direction, transforming
the representations learned by the self-attention mechanisms.

• Positional encoding: This technique incorporates word order information into the input
representations, enabling the model to capture the relative positions of words in the sequence.

The Transformer’s parallelizable design enables training on large datasets, which is crucial for
performance Halevy et al. (2009). By stacking multiple layers of self-attention and feed-forward
networks, the Transformer can learn complex relationships between words and generate highly
contextual representations.

A.3 Fine-tuning with BERT

BERT (Bidirectional Encoder Representations from Transformers) is a powerful language model
based on the Transformer encoder, designed for various NLP tasks, including text classification
Devlin et al. (2019). BERT is pre-trained on large corpora using two objectives:

• Masked Language Modeling (MLM): A certain percentage of input tokens are masked,
and the model is trained to predict the original tokens based on the context provided by the
unmasked tokens.

• Next Sentence Prediction (NSP): The model is trained to predict whether two sentences
follow each other in the original text, helping it learn relationships between sentences.

The pre-training process allows BERT to learn bidirectional contextual representations, which
can then be fine-tuned for specific tasks. Fine-tuning involves adding a task-specific output layer
on top of the pre-trained BERT model and training the entire model with a smaller learning rate.
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This process adapts the pre-trained representations to the target task, often requiring only a small
amount of task-specific training data.

Variations of BERT, such as RoBERTa Liu et al. (2019) and DistilBERT Sanh et al. (2019),
have introduced improvements in training methodology and model compression, further advancing
the state-of-the-art in text classification and other NLP tasks.

A.4 In-context Learning with Generative LLMs

Generative LLMs, such as GPT-3 Brown et al. (2020) and GPT-4 OpenAI (2023), are state-of-the-
art autoregressive language models that excel in various NLP tasks, including text classification.
GPT models differ from BERT in several key aspects:

• Computational scale: GPT models are much larger than BERT, with GPT-3 having 175
billion parameters compared to BERT’s 340 million. This increased capacity allows GPT
models to capture more information during pre-training.

• Context window size: GPT models have larger context windows, enabling them to process
longer sequences and handle long-range dependencies more effectively.

The combination of the causal language modeling objective, increased computational scale, and
larger context windows has made GPT models particularly adept at in-context learning. In-context
learning involves providing examples of desired input-output pairs (few-shot learning) or even just a
task description (zero-shot learning) as part of the prompt. The model uses this context to generate
appropriate responses without the need for explicit fine-tuning.

To perform in-context learning for text classification, users provide examples of texts and their
corresponding labels in the prompt. The model learns the task format and the relationship between
the texts and labels, enabling it to classify new texts based on the provided examples. The prompt
can also include additional instructions or context to guide the model’s output.

GPT-3 and GPT-4 have demonstrated remarkable performance in zero-shot and few-shot learn-
ing scenarios across a wide range of NLP tasks Bubeck et al. (2023). This capability has the potential
to significantly reduce the need for large labeled datasets and task-specific fine-tuning, making it
easier to apply LLMs to new text classification problems.

A.5 Choosing Between Fine-tuning and Prompt Engineering

Fine-tuning and prompt engineering represent two distinct methods for "steering" the output of
a language model given some input. Fine-tuning involves adapting the model’s parameters to a
specific task using labeled data, essentially aligning the model’s behavior with the desired output
for that task. This approach has been highly effective with models like BERT, where the pre-trained
representations are fine-tuned to perform text classification and other tasks with high accuracy.

On the other hand, prompt engineering focuses on designing effective prompts that guide the
language model to generate the desired output without modifying its parameters. This approach is
particularly relevant for large language models like GPT-3 and GPT-4, which have demonstrated
remarkable zero-shot and few-shot learning capabilities. By carefully crafting prompts that include
task instructions, examples, and relevant context, users can align the model’s output with their
intended goals.

Prompt engineering techniques for AI alignment in text classification tasks may include:

• Providing clear instructions and guidelines for the classification task

28



• Including representative examples of texts and their corresponding labels

• Specifying the desired format for the model’s output (e.g., label only, or label with confidence
score)

• Incorporating additional context or constraints to guide the model’s decision-making process

The choice between fine-tuning and prompt engineering depends on various factors, such as the
availability of labeled data, the complexity of the task, and the specific language model being used.
Fine-tuning may be preferred when there is sufficient labeled data and the task requires a high
level of customization. Prompt engineering, on the other hand, can be more efficient and flexible,
especially when working with large language models that have strong zero-shot and few-shot learning
capabilities.

As language models continue to evolve, the development of more sophisticated AI alignment
techniques will be crucial to ensure that these models can be effectively applied to a wide range
of text classification tasks while maintaining consistency with human values and goals. This may
involve a combination of fine-tuning, prompt engineering, and other emerging approaches, such as
reinforcement learning with human feedback Christiano et al. (2017) and value alignment Soares
and Fallenstein (2016).

B The Discourse Quality Index: Concept, Measurement, and Ap-
plication

The Discourse Quality Index (DQI) is a theoretically grounded and empirically validated instrument
for measuring the quality of deliberation in political speech (Steenbergen et al., 2003). It was
developed to advance the empirical study of deliberation by providing a reliable and flexible tool
for quantifying deliberative quality across a range of contexts.

B.1 Theoretical Foundations

The DQI is firmly rooted in Habermasian discourse ethics, which conceptualizes deliberation as
a process of rational argumentation aimed at reaching understanding and agreement (Habermas,
1996). According to Habermas, the key elements of an ideal deliberative process include the free and
equal participation of all affected parties, the justified exchange of arguments, respect for opposing
views, appeals to the common good rather than narrow interests, and a cooperative search for
consensus (Habermas, 1981, 1992).

While recognizing the counterfactual nature of these ideals, the DQI attempts to translate
them into observable indicators that capture the essential features of deliberative quality in real-
world political debates (Steenbergen et al., 2003). The index focuses on the speech act as the
unit of analysis, coding each relevant part of a debate according to multiple criteria derived from
deliberative theory.

B.2 Dimensions and Measurement

The current version of the DQI consists of seven indicators, each measured on an ordinal scale.
These indicators and their theoretical justifications are as follows:

1. Participation: This codes whether a speaker’s participation is impaired by interruptions or
formal constraints. It is a binary variable, reflecting the Habermasian ideal of free and equal
access to deliberation.
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2. Level of Justification: This captures the extent to which arguments are supported by
reasons, on a scale from 0 (no justification) to 4 (sophisticated justification with multiple
linked reasons). It operationalizes the Habermasian emphasis on rational argumentation.

3. Content of Justification: This measures whether justifications appeal to narrow group
interests (0), neutral considerations (1), or the common good, either in utilitarian (2a) or
Rawlsian "difference principle" terms (2b). It reflects the deliberative ideal of public-spirited
reasoning.

4. Respect for Groups: This codes the degree of respect shown toward affected groups, from
explicitly negative (0) to explicitly positive (2) statements. It translates Habermas’s notion
of empathy and reciprocity.

5. Respect for Demands: This measures respect toward the demands of other speakers, using
the same scale as above but with an additional top category (3) for explicitly agreeing with a
demand. It captures the deliberative aim of recognizing the merit in others’ claims.

6. Respect for Counterarguments: This assesses how speakers engage with counterargu-
ments, from ignoring (1) or degrading (0) them to neutrally acknowledging (2), valuing (3),
or agreeing with them (4). It operationalizes the weighing of competing arguments in delib-
eration.

7. Constructive Politics: This codes the degree to which speakers propose constructive solu-
tions, from pure positional politics (0) to mediating proposals (3). It reflects the deliberative
goal of cooperatively seeking consensus or compromise.

To illustrate the coding scheme, consider the following example speech act from a debate on
immigration policy:

While I understand the economic concerns raised by the opposition, I believe we have
a moral duty to prioritize the humanitarian needs of refugees. Numerous studies show
that asylum seekers pose little threat to our social cohesion or welfare system. Therefore,
while the opposition’s views are valid, I maintain that moderately increasing our refugee
intake is the right policy for the common good.

This speech would be coded as follows:

• Participation: 1 (normal)

• Level of justification: 3 (multiple complete justifications)

• Content of justification: 2a (appeal to the common good in utilitarian terms)

• Respect for groups: 1 (neutral toward refugees)

• Respect for demands: 2 (explicit respect for opposition demands)

• Respect for counterarguments: 3 (values opposition’s economic arguments)

• Constructive politics: 1 (defends current agenda but acknowledges other views)
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B.3 Validity and Reliability

The theoretical validity of the DQI has been established through its close alignment with key
concepts from deliberative theory, particularly Habermasian discourse ethics (Steenbergen et al.,
2003). Its empirical reliability has been demonstrated through inter-coder agreement tests, with
Cohen’s kappa scores ranging from 0.881 to 0.954 across the seven indicators, suggesting excellent
consistency between independent coders (Steiner et al., 2004).

B.4 Evolution and Application

Since its initial development, the DQI has undergone some refinements to improve its precision and
applicability. For example, the original coding protocol assigned ignoring counterarguments the
lowest score on the respect scale. However, recognizing that non-engagement is also common in
respectful, non-conflictual debates, the authors adjusted this to a higher (though still suboptimal)
category (Bächtiger and Steiner, 2005).

The DQI has now been applied to study deliberation in a wide variety of political contexts, in-
cluding parliamentary debates, public consultation processes, international negotiations, and online
discussions (Bächtiger et al., 2018a). By enabling the quantitative comparison of discourse quality
across settings, it has yielded important insights into the institutional, cultural, and issue-specific
drivers of deliberative politics.

For instance, Bächtiger and Steiner (2005) found that consensual political systems like Switzer-
land’s tend to produce higher DQI scores than competitive systems like Germany’s or the UK’s,
especially on the respect dimensions. However, this effect interacts with institutional publicity: in
consensus systems, the difference between public and non-public debate is minimal, while in com-
petitive systems, closed-door negotiations score much higher than open sessions. Other work has
shown the DQI to predict outcomes like unanimous agreement in elite negotiations (Spörndli, 2004).

While the DQI has greatly advanced the empirical study of deliberation, it is not without
limitations. Its focus on observable speech means it cannot directly measure certain deliberative
ideals like truthfulness or authenticity (Steenbergen et al., 2003). Moreover, its aggregation of
complex speech acts into numeric scores necessarily simplifies the qualitative richness of discourse.

Nonetheless, by providing a systematic and reliable means of evaluating discourse against norma-
tive standards, the DQI remains an invaluable tool for understanding the realities and possibilities
of deliberative democracy. As the field continues to evolve, the DQI will no doubt be further refined
and adapted. But its core aim of bringing empirical rigor to the study of discursive politics continues
to be vital.
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