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Abstract

With the rapid development of large language models (LLMs), we claim that researchers
using LLMs must make three critical decisions: model selection, domain-adaptation
strategies, and prompt design. To help provide guidance on these choices, we establish a
set of benchmarks for a wide range of natural language processing (NLP) tasks pursued
by political science tasks. We use this benchmark to compare two common approaches
to the classification of political text: domain-adapting smaller LLMs such as BERT
to one’s own data with varying levels of unsupervised pre-training and supervised
fine-tuning, and querying larger LLMs such as GPT-3 without additional training.
Preliminary results indicate that when labeled data is available, the fine-tuning focused
approach remains the superior technique for text classification.

1 Introduction

Traditionally, supervised and unsupervised machine learning methods have been used in the
realm of natural language processing (NLP) for quantifying concepts in political text. Each
approach has its benefits and drawbacks: supervised methods yield easily interpretable re-
sults but necessitate costly labeling, while unsupervised approaches, such as Latent Dirichlet
Allocation (LDA Blei et al., 2003), are cost-effective but challenging to interpret. With the
advent of advancements in the field of machine learning and artificial intelligence such as
neural networks, word embeddings, transformers, and large language models (LLMs), trans-
fer learning, which combines both unsupervised and supervised approaches, has become the

∗PhD Candidate, Department of Political Science. mcbosley@umich.edu
†Postdoctoral Researcher, Data-Driven Social Science Initiative. mjacobsharukawa@princeton.edu
‡Postdoctoral Researcher, Center for Comparative Politics. hauke.licht@wiso.uni-koeln.de
§PhD Candidate, Department of Computer Science. hoyle@umd.edu

1

mcbosley@umich.edu
mjacobsharukawa@princeton.edu
hauke.licht@wiso.uni-koeln.de
hoyle@umd.edu


standard in applied machine learning (Pan & Yang, 2010; Zhuang et al., 2020). In the trans-
fer learning approach, LLMs such as BERT1 (Devlin et al., 2019) are first pre-trained on a
large general text corpus on an unsupervised task such as masked-word prediction, and then
fine-tuned using a supervised approach on main-specific natural language processing (NLP)
tasks such classification. While this approach has proven successful in achieving state-of-
the-art performance across a wide array of NLP tasks (Raffel et al., 2020), the boundary
at which additional unsupervised pretraining vs. finetuning with one’s own data remains
unclear (Gururangan et al., 2020).

As the data and computational resources used to train LLMs has grown, so too has their
language processing proficiency. Generative Pre-Trained Transformer (GPT) models have
been trained to generate text in response to any arbitrary prompt by iteratively predicting
the word that is most likely to come next (Radford et al., 2019). GPT models like In-
structGPT (Ouyang et al., 2022) have been shown to accomplish a variety of NLP tasks
with only a few examples in its prompt, a technique referred to as in-context learning (ICL,
Brown et al., 2020a). In-context learning, or prompt-engineering, involves manipulating the
information provided to an LLM via its prompt to enhance the model’s performance on a
specific task. However, ICL remains more art than science, and determining the optimal
information to provide is an active research area with conflicting results (Min et al., 2022).

There are also financial and ethical concerns associated with using GPT-class models.
While these larger models can also be fine-tuned for domain-specific tasks, the computa-
tional burden is significantly higher than for smaller models like BERT. Moreover, since the
computational cost of producing outputs from high-capability GPT models like GPT-3 and
GPT-4 is high, researchers are forced to use proprietary and closed-source models from tech
companies like OpenAI, raising concerns about reproducibility and cost.

Currently, then, it is an open question as to whether fine-tuning a relatively small model
such as BERT for a target task is a better approach than using in-context learning to
produce predictions from a large general-purpose language model like GPT-4 whose size
prohibits fine-tuning.

Our central claim is that any researcher using LLMs for text analysis must make three
discrete choices: (1) the model to use, (2) the training strategy to employ for domain-
adaptation, and (3) and the approach to in-context-learning. Our goal is to provide guidance
to researchers navigating these choices. Towards this end, we have begun the process of
establishing a set of benchmarks for various political science NLP tasks. As an initial
investigation, we use these benchmarks to compare the benefits of two approaches: domain-
adapting smaller LLMs (such as BERT) to one’s own data, and using in-context learning
with larger LLMs like GPT-3 or GPT-4 without additional training. Our preliminary results
indicate that when labeled data is available for fine-tuning, it provides substantially better
performance for classification tasks than zero-shot or in-context learning approaches using
GPT-3. We also show that when labeled data is plentiful, additional pre-training does not
meaningfully improve performance.

This paper is organized as follows. In Section 2, we offer a brief review of the Transform-
ers architecture and text classification using LLMs. In Section 3 we describe our process of
benchmark construction (including dataset selection and description), model architectures,
training strategies, evaluation metrics, and experimental design. In Section 4, we present
our preliminary results, comparing the performance of different approaches for classification
across using our benchmarks. Lastly, in Section 5, we discuss our findings and provide
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recommendations for practitioners.

2 Large Language Models for Text Classification

2.1 The Transformer Architecture

The development of large language models (LLMs) and the Transformer architecture has
been driven by a series of innovations in machine learning, such as word embeddings, neural
networks, and the Transformer architecture itself.

Word embeddings are dense vector representations of words that capture their semantic
meaning in a continuous space. These representations are learned from large corpora of text
data and have proven to be effective in various natural language processing tasks. Early
word embedding techniques, such as Word2Vec (Mikolov et al., 2013) and GloVe (Pennington
et al., 2014), enabled researchers to capture semantic relationships between words, providing
an alternative to traditional one-hot encodings or bag-of-words representations.

Neural networks provided the foundation for increasingly complex models capable of
learning from and generating text data (Elman, 1990; Hochreiter & Schmidhuber, 1997;
Kim, 2014). These advancements paved the way for the groundbreaking Transformer ar-
chitecture, introduced by Vaswani et al. (2017), which combined the strengths of previous
neural network models to create a powerful, scalable, and highly effective neural network
for various NLP tasks, including text classification.

The Transformer architecture is composed of two main components: an encoder, which
processes the input text by breaking it down into meaningful representations, and a decoder,
which generates the output text based on these representations. The Transformer is based on
a combination of self-attention mechanisms, which help the model focus on relevant parts of
the text, and feed-forward layers, which process the information in a single direction without
looping back. These components are organized in a stacked arrangement, forming multiple
layers that enable the model to learn complex relationships between words. To account for
the order of words in a sequence, the Transformer incorporates positional encoding, which
adds information about the position of words, allowing the model to recognize and learn
patterns based on word order. This design allows the Transformer to efficiently identify
relationships between words in a sequence, regardless of their distance from one another.
The larger scale is crucial, as a key lesson from decades of machine learning research is the
more, the better (Halevy et al., 2009).

2.2 Fine-tuning with large pretrained language models

BERT (Bidirectional Encoder Representations from Transformers) is a powerful language
model based on the Transformer architecture’s encoder, designed for a wide range of natural
language processing tasks, including text classification (Devlin et al., 2019).

BERT is pre-trained with a masked language modeling objective, wherein a certain per-
centage of words in a sentence are masked, and the model is trained to predict the masked
words based on their surrounding context. This pre-training step allows BERT to learn
bidirectional contextual representations, as it must understand the context of words from
both the left and right.

After pre-training, BERT models can be fine-tuned : the general language knowledge
acquired pre-training supports the subsequent learning of specific tasks, such as text clas-
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sification. This approach has proven effective across various NLP tasks, as the pre-trained
knowledge can be transferred and fine-tuned to the target domain.

Several BERT-like models have emerged, offering variations and improvements over the
original BERT architecture, with notable examples such as RoBERTa and DistilBERT.2

Although there are hundreds of BERT-like models that have surpassed the originals’ per-
formance on a variety of tasks, the basic pretrain-and-finetune paradigm remains dominant.

2.3 In-context learning with GPT models

The Generative Pre-trained Transformer (GPT, Radford et al., 2018) family of LLMs, such
as GPT-3 (Brown et al., 2020a) and its successor GPT-4 (OpenAI, 2023), are state-of-the-
art autoregressive language models that perform exceptionally well across a wide range of
natural language processing tasks, including text classification.

There are three critical differences between BERT and GPT families of models: their
training objectives, the computational scale at which they are trained, and their prompt
size. BERT class models are mostly trained using masked language modeling, where it
predicts missing words in a sentence given their context.3 GPT-3, on the other hand, is
trained exclusively to predict the next word in a sequence, also known as causal language
modeling.

In terms of scale, GPT-3 has 175 billion parameters, which is orders of magnitude larger
than BERT’s 340 million parameters. The larger scale allows GPT-3 to capture more
information from the vast amounts of data used during pretraining, which is estimated to
be hundreds of gigabytes of text (Brown et al., 2020b). The substantial scale of the data
and computation used to train GPT-3 lead to “emergent” generalization behaviors. This
increased capacity allows GPT models to better utilize the available context window when
processing text.

Larger context windows in GPT models enable more effective in-context learning. While
the context window size is primarily determined by the model architecture and configuration,
the model scale and training objective influence the model’s capacity to effectively utilize the
context window. GPT models’ larger scale and unidirectional context learning from causal
language modeling allow them to process longer sequences and better handle long-range
dependencies.

The combination of the massive scale of the data and computation used to train the
model with the causal model objective and increased context windows has made GPT mod-
els more adept at generating text given a prompt than BERT models, and has lead to
“emergent” generalization behaviors. GPT-3 has demonstrated remarkable zero and few-
shot learning abilities, meaning it can perform tasks without explicit fine-tuning or with only
a few examples provided as context, and early indications are that GPT-4 is even more adept
(Bubeck et al., 2023). To perform few-shot learning with GPT models, users provide exam-
ples of the desired input-output pairs as part of the prompt, which helps the model learn

2RoBERTa (Robustly optimized BERT approach) proposed by Liu et al. (2019), improves upon BERT by
modifying the training procedure and using larger mini-batches, longer training time, and removing a next
sentence prediction task, leading to improved performance across a range of tasks. DistilBERT, introduced
by Sanh et al. (2019), a smaller, faster, and more efficient version of BERT, achieved through knowledge
distillation. DistilBERT retains approximately 95% of BERT’s performance while reducing the model size
by 40% and requiring 60% fewer computations.

3The original BERT was trained on both masked-language and next-sentence prediction tasks, but sub-
sequent BERT-like models such as RoBERTa showed that dropping the next-sentence prediction task in
favor of more masked-language modeling led to better results.

4



the format of the task and generate appropriate responses. The prompt can also include
any additional context or instructions necessary for the model to complete the task. Table
1 shows an example of in a political text classification task using in-context learning, where
a user provides GPT-3 several labeled examples, specifying the classification categories and
a brief instruction on how to classify the text. The model then generates a classification
label for the given input text, based on the examples and instructions provided.

Input Text Output Label

Example 1: Government should provide universal
health care to all citizens.

Liberal

Example 2: Lower taxes stimulate economic growth. Conservative

Example 3: The weather today is sunny with a high of
75 degrees Fahrenheit.

Neutral

... ...

New Input: Regulations on businesses should be re-
duced to encourage entrepreneurship.

[To be predicted by the
model]

Table 1: Example of in-context learning with a GPT model for a political text classification
task. The model is provided with labeled examples and is expected to classify the new input
text based on the context from these examples.

2.4 Closed source concerns

An important additional consideration when choosing between the pretrain-finetune paradigm
with BERT models and the pretrain-prompt engineering approach with GPT models is the
closed-source nature of the most capable GPT models. Unlike the majority of BERT mod-
els, which are open-source and easily accessible, the largest GPT models are not publicly
available due to their immense size, computational requirements, and potential misuse. As a
result, researchers and practitioners must rely on APIs provided by the organizations main-
taining these models (such as OpenAI), which can lead to limitations in terms of access,
customization, and reproducibility.

The closed-source nature of the most capable GPT models raises concerns for repro-
ducible research. Since these models are not readily available for experimentation, it be-
comes challenging for researchers to reproduce and verify the results of studies that use
these models. Moreover, the lack of access to the underlying model and training data makes
it difficult for researchers to investigate potential biases, limitations, and opportunities for
improvement in these models.

BERT models, in contrast, are typically open-source, allowing researchers to access,
adapt, and fine-tune them as needed, which facilitates reproducible research.

2.5 The large and the very large

Despite the recent attention paid to GPT-type models and their surprising abilities, the
computer science and machine learning literature has not found prompting large GPT-class
models to be a definitively superior alternative to the pretrain-and-finetune paradigm (Liu
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et al., 2022). Although some findings suggest that prompting is more robust to spurious cor-
relations in training data, it can also fail to learn from the examples provided in the prompt,
performing identically when presented with randomized labels (Si et al., 2023). Indeed, there
are many tasks in which large language models fail to surpass weak baselines(OpenSamizdat,
2021).

It is therefore not a given that we should abandon domain-adaptation with smaller
models like BERT in favor of prompt-engineered GPT models. Rather, we should be careful
to evaluate which approach our task is best suited to. In the next section, we outline
our approach to investigating whether additional pretraining on domain-specific data can
help smaller masked-language-models (such as BERT) outperform their larger unadapted
counterparts (such as GPT) in the context of the three-part choice we outline. By exploring
the trade-offs between model choice, domain adaptation, and prompt design, we aim to
provide a clearer understanding of when each paradigm might be most suitable for a given
task or domain.

3 Methodology

This section describes the research design we use to evaluate the performance of the two
paradigms of text classification: domain adaptation with BERT-like models, involving a
combination of pretraining with masked language modeling and finetuning with supervised
classification, and in-context learning with GPT models. In Section 3.1 we discuss our
ongoing efforts at constructing a benchmark evaluating methods of analyzing political text,
including large unlabeled datasets to use for unsupervised pre-training of LLMs, and labeled
datasets to use for supervised fine-tuning. In Section 3.2 we describe the models we use for
our experiments, including the BERT models we fine-tune and the GPT models we prompt.
Then, in Section 3.3 we describe the experiments we conduct to evaluate the performance
of the two paradigms.

3.1 Dataset selection and description

3.1.1 Pre-training data

For model pre-training, we have compiled a novel dataset of English-language parliamentary
speech records from the lower houses of Australia (House of Representatives, 1998-2012),
Canada (House of Commons, 2004-2019), Ireland (Dáil, 1970-2022), and the United King-
dom (House of Commons, 1970-2022).4 Combined, our dataset records the text of a total
of 6,228,367 speeches.5

With a median number of words per speech between 30 (Ireland) and 736 (Australia), the
texts in this dataset are quite long.6 We have thus segmented each speech into paragraphs.
This resulted in a total of 12,583,126 speech paragraphs.7

We will add more pre-training datasets in future iterations of this project. In the domain
of party communication, we plan to add election manifestos (Lehmann et al., 2022) and

4We have extracted the speeches from the official XML-format transcripts provided by these countries’
Hansard or parliamentary services.

5Australia: 101,020; Canada: 408,125; Ireland: 2,281,536; and United Kingdom: 3,437,686.
6These differences exists because the structure of the XML files differs across countries.
7Australia: 1,290,946 paragraphs (median of 65 words/paragraph); Canada: 1,809,600 paragraphs (me-

dian of 45 words/paragraph); Ireland: 4,324,958 paragraphs (median of 48 words/paragraph); and United
Kingdom: 5,157,622 paragraphs (median of 61 words/paragraph).
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press releases (Erfort et al., 2021). In the domain of legal documents (e.g., bills), we will
extend our pre-training data by retrieving documents from ParaCrawl (Esplà et al., 2019),
the Eur-Lex data (Ovádek, 2021), and publicly available records of the European Court of
Human Rights.8 And in the domain of international politics, we will integrate copora like
the multi-UN corpus (Ziemski et al., 2016) and other datasets that record the proceedings
of international organizations.

Further, we will extend the language coverage of our pre-training dataset. Multilingual
quantitative text analysis is gaining in importance in comparative politics research (cf. Lucas
et al., 2015; Licht, 2022), and many political text locations like the ParlSpeech2 dataset
(Rauh & Schwalbach, 2020) or the Manifesto Corpus (Lehmann et al., 2022) record texts in
many (European) languages.

3.1.2 Fine-tuning benchmarks

To evaluate our pre-trained models’ performance in downstream tasks, we focus on super-
vised classification. Supervised classification is one of the most widely applied text analysis
tasks in the political science literature (e.g., Hillard et al., 2008; D’Orazio et al., 2014;
Burscher et al., 2015; Peterson & Spirling, 2018; Siegel et al., 2019; Barberá et al., 2021;
Osnabrügge et al., 2021) and related fields (e.g., van Atteveldt et al., 2021; Bonikowski
et al., 2022). Moreover, recent contributions indicate that supervised classification is one
task where transfer learning might be especially beneficial (Linder et al., 2020; Laurer et al.,
2022; Wankmüller, 2022; Licht, 2023). We have compiled a benchmark of currently two
annotated text datasets available from the replication materials in highly-visible political
science publications.

The first dataset included in our benchmark is based on the human-annotated text data
collected by the Comparative Manifestos Project (CAP) (bau, 2019). The CAP coding
scheme has 21 categories (so-called main topics), which we use as labels to fine-tune multi-
class classifiers (cf. Linder et al., 2020; Laurer et al., 2022). We use the Speeches from the
Throne dataset (1911-2012) compiled by (Jennings et al., 2011), which records 6624 labeled
texts.9.

The second dataset included in our benchmark is based on Benoit et al. (2016) who
have distributed sentences sampled from British party manifestos for crowd-sourced human
coding. Their coding task is a two-step conditional procedure. A coder first needs to decide
whether the sentence they are asked to code discusses issues pertaining to a given poilicy
area. If so, they were also aske to code the sentence’s expressed stance on a 5-point scale.

Benoit et al. (2016) have adopted this coding procedure in two separate tasks. In their
first task, they have focused on the policy areas of economic policy and social policy. The
policy area codings for this task thus comprise three label classes (“economic”, “social”, and
“other”) and if the sentence was judged to belong to either the economic or social policy
area, they also contributed stance codings (left to right for sentences with economic policy
area focus, conservative to liberal for for sentences with social policy area focus). In their
second task, they have focused on the policy areas of immigration. The policy area codings
for this task thus comprise two label classes (“immigration” and “other”) sentences that
were judged to belong to the immigration policy area were further coded for their stance.

Their data thus provides us with labeled data to perform two classification tasks (“eco-
nomic” vs. “social” vs. other and “immigration” vs. other) and three stance detection

8https://hudoc.echr.coe.int/
9see https://www.comparativeagendas.net/uk

7

https://hudoc.echr.coe.int/
https://www.comparativeagendas.net/uk


tasks. Omitting the immigration policy stance detection task because there are very few
sentences in this subset, we have prepared their data to construct a sentence-level labeled
texts datasets.10

In future iterations of this project, we will add more labeled datasets to our benchmark
to increase its diversity and coverage of relevant political text analysis tasks. For example,
we will include existing pairwise comparison (Benoit et al., 2019; Carlson & Montgomery,
2017), multilabel (Theocharis et al., 2016; Erlich et al.), and stance detection (Bestvater &
Monroe, 2022) datasets. We also plan to make our benchmark publicly available on GitHub.

3.2 Model architectures and training strategies

Our modeling approach is to use RoBERTa (Liu et al., 2019), a variation of BERT that
has shown improved performance on a variety of natural language understanding tasks, to
investigate the effect of additional pre-training on our domain-specific dataset and compare
the performance of the resulting models against zero- and few-shot learning using OpenAI’s
GPT-3 API.

We first pre-train a RoBERTa model on a domain-relevant dataset consisting of English-
language parliamentary speech records from the Irish Dáil. The pre-training is performed
for 500 steps, where every step processes 100,000 documents. We create model checkpoints
at steps 0, 50, 100, 150, 200, 250, and 500.

For each of these checkpoints, we load the pre-trained RoBERTa model and fine-tune it
on the Benoit economic and social policy dataset, which is part of our benchmark dataset
collection. The fine-tuning is performed for 10 epochs. By evaluating the models at various
pre-training steps, we can assess the relative benefits of additional pre-training versus fine-
tuning.

In parallel, we conduct an experiment using OpenAI’s GPT-3 API to perform zero-
and few-shot classification on the same benchmark datasets. This experiment allows us to
compare the performance of our pre-trained and fine-tuned RoBERTa models with state-of-
the-art few-shot learning techniques.

To employ few-shot learning, we provide GPT-3 with a series of examples, including a
brief instruction of the task and several input-output pairs. These examples serve as context
to help the model understand the specific classification task. To perform zero-shot learning,
we provide GPT-3 with a single example, which is the instruction of the task. GPT-3 then
generates a response for each new input, which represents the predicted class label.

3.3 Evaluation metrics and experimental design

To evaluate and compare the performance of the models trained using the three different
strategies, we employ the following evaluation metrics.

Accuracy : This metric represents the proportion of correctly classified instances out
of the total number of instances. It is a common and easily interpretable measure for
classification tasks.

Precision, Recall, and F1-score: These metrics provide a more nuanced evaluation, con-
sidering both false positives and false negatives. Precision measures the proportion of true

10We have aggregated annotations of multiple crowd workers per sentence into single, sentence-level policy
areas labels (stance codings) using majority voting (the mean) and used sentences’ ground-truth labels
(stance codings) whenever available.
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positive instances among the instances predicted as positive, while recall measures the pro-
portion of true positive instances among the actual positive instances. The F1-score is the
harmonic mean of precision and recall, offering a single metric that balances both values.
Because our validation task has three labels, we use F1 macro, which computes the un-
weighted mean of the F1-score for each class. That is, the F1 macro score is the average of
the F1 scores for each class.

To ensure a fair comparison of the three training strategies, we divide our text-label
pairs dataset into three subsets: training, validation, and test sets. The training set is used
to fine-tune the BERT-like models, while the validation set is employed for hyperparameter
tuning and model selection. The test set is reserved for evaluating the final models, providing
an unbiased estimate of their performance.

4 Results

Figure 1 presents the preliminary results of our experiments, comparing the performance
of RoBERTa classifiers with varying levels of domain-specific pre-training (denoted by the
colored lines) and fine-tuning (denoted by the number of epochs) against zero- and few-
shot queries using OpenAI’s davinci-text-003 GPT-3 model (denoted by the grey and black
dashed lines, respectively).11

There are four key takeaways from this figure. First, the RoBERTa classifiers consistently
outperform GPT-3 zero-shot and few-shot queries across all levels of domain-specific pre-
training and fine-tuning epochs. Second, the impact of domain-specific pre-training on the
RoBERTa classifiers seems to be relatively minor: the performance difference between the
colored lines (i.e., RoBERTa classifiers with different levels of domain-specific pre-training)
is not substantial, particularly when the number of fine-tuning epochs is moderately high
(e.g., 10 epochs).

Third, the performance of the RoBERTa classifier does not improve significantly with
additional fine-tuning epochs, suggesting that the model reaches its optimal performance af-
ter only a few steps of fine-tuning. Fourth, (and most surprisingly), both GPT-3 approaches
perform poorly, and the few-shot queries approach (black dashed line) shows only a marginal
improvement over the zero-shot queries (grey dashed line), indicating that prompt engineer-
ing has limited effectiveness in enhancing the performance of GPT-3 in this specific domain.

We discuss these results in the next section.

5 Discussion

In this paper, we presented a preliminary investigation into the effectiveness of the domain-
adaptation approach to pre-training and fine-tuning BERT models compared to zero-shot
and in-context learning approaches using GPT models such as GPT-3. Our results showed
that RoBERTa, when fine-tuned on the specific classification tasks, vastly outperforms both
zero-shot and in-context learning approaches using GPT-3. While we need to conduct a
more thorough series of tests, we suspect that this can be attributed to a combination of

11An epoch refers to one complete iteration of the training dataset during the fine-tuning process. A
higher number of epochs indicates more exposure of the model to the task-specific labeled data, allowing it
to learn more from the training set. Each pre-training step is a single update of the model’s weights based
on a batch of training samples. In our experiment, fifty training steps is equivalent to one hundred thousand
speeches of legislative text observed by the model.
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Figure 1: Comparison of RoBERTa classifier performance at varying levels of domain-
specific pre-training (denoted by the colored lines) and fine-tuning (denoted by the number
of epochs), with zero- and few-shot queries of OpenAI’s davinci-text-003 GPT-3 model, de-
noted by the grey and black dashed lines, respectively.

RoBERTa’s architecture, domain-specific pre-training, fine-tuning optimization, and task-
specific supervision. The improved performance of RoBERTa demonstrates the benefits of
fine-tuning on target tasks and utilizing task-specific labeled data.

We also showed evidence indicating that additional domain adaptation via pre-training
does not seem to make a significant difference when there is a moderate amount of data
(in our case, approximately 10,000 sentences in the training set) to train on. The initial
pre-training of the RoBERTa model on a large corpus of general-domain text, then, might
be sufficient to capture the necessary contextual information for the target tasks, making
further domain-specific pre-training less impactful when a moderate amount of training data
is available.

Finally, in our results prompt engineering only marginally improved the performance of
the GPT-3 model. While more work is needed to determine exactly how in-context learning
can improve the performance of GPT models in certain tasks, our results communicate a
useful reminder that just because GPT models show a remarkable ability to generate text,
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they are not necessarily the best choice for all NLP tasks.
Our results suggest that while GPT-3 has demonstrated impressive capabilities in various

tasks, it may not be ideally suited for certain types of classification problems, as generative
nature and focus on language modeling may limit its ability to capture and discriminate fine-
grained patterns in political texts, particularly when compared to a fine-tuned RoBERTa
model that has been specifically optimized for such tasks.

We therefore recommend that researchers do not underestimate the continued power of
fine-tuned BERT-family models such as RoBERTa for their classification tasks. Our findings
suggest that this approach can yield significant performance improvements compared to
zero-shot and in-context learning using GPT-3.

Further research is needed to confirm these findings and explore other factors that may
contribute to the observed performance differences between the fine-tuning approach with
RoBERTa and the zero-shot and in-context learning approaches using GPT-3.

To this end, we plan to expand our benchmark dataset collection, adding more labeled
datasets that cover a broader range of political text analysis tasks, and use this data to
investigate how different techniques of domain adaptation and in-context learning can be
combined to further improve the performance of a wide variety of LLMs. We are particularly
interested in exploring the domain adaptation of GPT models with political corpora using
novel fine-tuning techniques, including multi-task learning and knowledge distillation, as
well as in exploring creative applications of text generation models such as GPT-3 and
GPT-4 for political text analysis tasks that extend beyond classification.
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